What the German government’s national strategy on Artificial Intelligence should look like

Better late than never: In late July, the German federal government has published a cornerstone paper on a “strategy artificial intelligence”. The details of the strategy will be worked out until November and presented at the Digital Summit in December.

There will be a lot to do after the summer pause. The paper, in it’s current state, is mostly generic, and very little commitment shines through. When you read it to the end, you’ll find a silver lining in the very last section “Immediate measures of the Federal Government” (my translation):

Keeping and retaining AI experts in Germany has immediate priority across programs and policies. Networking and expansion of competence centers with France will be implemented without delay.

If only these two bullet points translate into tangible action, the paper would be worth the paper. Yet is does not define a strategy. The paper as a whole looks more like a concatenation of brainstorming items with no clear direction.

Some of the cornerstones seem to be unrelated to the topic of AI. For example the idea to invest in infrastructure. Sounds good, but what does it mean in the context of AI? Building a national GPU cloud?

So let’s see, if we can do better. Let’s define a better AI strategy for Germany.

A better AI strategy for Germany

Global context

First, let’s look at the global context, because it makes no sense to position ourselves when we don’t know where everybody else is standing.


When AlphaGo beat Lee Sedol in 2016, we felt with the Korean people, who had to witness a national idol losing against DeepMind’s machine. What I didn’t realize then was, that for China, this was nothing short of a Sputnik shock. An ancient Chinese game that requires intellectual brilliance, strategic planning, experience and intuition to win, was suddenly won by a British (of all nations) team of a few young people and their computer. It was apparent, that a technology with these powers can not only be used for playing games. And this came at a time when the West was more then ever reluctant to share advanced technology with China.

So Beijing committed itself to become the global AI leader by 2030. China has earmarked hundreds of billions of dollars for collaboration with its existing tech leaders and to encourage the rise of unicorn startups. Last year, the State Council’s release of a national strategy for AI development channeled and focused existing initiatives and made them a national priority.

Have a look at FHI institute’s paper Deciphering China’s AI Dream for more.


Today, the United States are by all means leading in the field of artificial intelligence research, and they also have introduced the most policy reports on AI strategies. It is difficult to say, if the current federal administration is willing to implement any of these strategies, and if so, how long the political climate will allow researchers and engineers to move forward at a meaningful speed.

From the outside it looks like the administration prefers leaving the field mostly to the private sector. When it comes to the industrial application of AI, this corresponds well with the overall political direction. AI innovations can play a key role in concert with other policies. For example: After pulling back from globalization and pushing a part of the workforce out of the country, AI will have to play a major role in replacing manual labor.

But with a few exceptions, automation is not the area of artificial intelligence, that American innovators are best at. The borders of the field are pushed by companies that will keep targeting the global market with disruptive services, mostly for end users. The fact that these companies have their headquarters in the United States does not automatically create a competitive advantage for the nation, beyond increased tax revenues.

At the end of the day, the ability or inability of Washington to implement a concise strategy might not even matter, because the United States have other federal bodies, that operate with relative independence and have proven in the past that they can efficiently help out in in these situations. DARPA with it’s annual 3 billion dollar budget and great track record on strategic investments, is an outstanding example.  Less visible but probably not less effective are the efforts of the intelligence agencies to utilize AI for their specific needs.

European Union

In 2013, the European Union proposed the 10-year Human Brain Project, which is still the most important human brain research project in the world.

A year earlier, in 2012, the European Commission decided to initiate a Public-Private Partnership in Robotics, later named SPARC. Driven by an aging population and little access to cheap labor, manufacturing companies in the EU traditionally are under more pressure to automatize, than companies in China and the US. Hence robotics is taken very seriously in the EU.


Japan has an even sharper focus on robotics, mostly for the same reasons as the EU. It has, with a margin, the most robot users, robotics equipment, and service manufacturers in the world.


In March, Emmanuel Macron outlined France’s national strategy for artificial intelligence. The government will spend 1.5 billion euros over five years to support AI research, encourage startups, and collect data.

In a Wired interview, Macron discussed the reasons behind the initiative. While you can read some fear of missing out between the lines, one central goal seems to be defending European values and the way we live. When a technology shapes every aspect of our lives as AI does, it’s best to be involved in shaping the standards that govern this technology.

Paris is already an AI Hub with labs of some of the biggest players.  With regained self confidence after winning the soccer world cup, and under considerate, sober-minded political leadership, it looks like France will enter the club of global AI leaders rather sooner then later. Either with or without the rest of the EU.

United Kingdom

With the chaos surrounding the Brexit, it is hard to say if the UK will be able to execute consistently on a national AI strategy, or any strategy at all. But it certainly has enormous potential. DeepMind, Swiftkey and Babylon all started in the UK.

In April, the UK government has presented something like a national AI strategy in a quite detailed policy paper called the “AI Sector Deal“. The point of this deal is, to establish a strong partnership between business, academia and government. The objective is rather bold:

 A revolution in AI technology is already emerging. If we act now, we can lead it from the front. But if we ‘wait and see’ other countries will seize the advantage. Together, we can make the UK a global leader in this technology that will change all our lives.

Also the goals do not exude unnecessary modesty:

  • AI and Data Economy – We will put the UK at the forefront of the artificial intelligence and data revolution
  • Future of Mobility – We will become a world leader in the way people, goods and services move
  • Clean Growth – We will maximise the advantages for UK industry from the global shift to clean growth
  • Ageing Society – We will harness the power of innovation to help meet the needs of an ageing society


In June, an Indian government think tank has presented the countries AI strategy in the form of a discussion paper. Among other things, the paper discusses the possibility to use AI for social inclusion and to position India as an AI hub for the developing world.



Sophia, Saudi Arabia’s first robot citizen, gave a speech at the pre-opening of the Munich Security Conference earlier this year.

Many other countries are in the process of implementing their AI strategies with full steam. The UAE have a Ministry for AI, Saudi Arabia has at least one robotic citizen. A good and regularly updated overview on national AI strategies can be found in Tim Duttons Blog.


Timing, Pace and Direction

Germany is a little late in this.

Here is the good news: Consolidation has not even begun. The development is so fast, that it does not matter much, if you are behind today. We are currently in the qualifying phase, where nations, blocs and organizations compete for the Pole Position in the much more important race for the best utilization of AI. The price of this is a short but abundant economic and political dominance, that will be used by the winner to shape societies and the global political landscape for many years. This race will be won by the region that want’s it most. And currently this seems to be China.

But not all contestants in this race run in the same direction, so it is unclear, if we even have a race and what the criteria for winning are. While the Silicon Valley has a focus on creating science fiction technology to create new markets and disrupt others, China will work on using AI for efficiency gains to stay competitive in their existing markets and probably on intelligence and military applications to keep their trade routes open. Sub-Saharan Africa on the other hand will keep looking for innovative ways to provide public services without first building up the expensive 19th century infrastructure, which serves as a basis for these services in other countries.

It makes sense that every region focuses on solving their particular problems first. While it seems inevitable, that countries and blocs compete in building up AI capabilities, they don’t necessarily need to to compete in the development of specific technologies or certain applications of AI. In the past, learning from each other has mostly been a good practice with new technologies. With AI comes a new twist: now even our systems can learn from each other.  And they will, even if we don’t want it. There is currently no feasible IP protection for machine behavior, for the same reason that there is no way to stop monkeys from copying each others behavior. Nonetheless an implicit protection exists: When an AI system solves a problem that others don’t have, there is little incentive to copy it. There is also indirect protection: When my AI system finds the formula for an active pharmaceutical component faster then your AI system, I can protect this result with the established procedure.

Geopolitical situation

One consequence of America’s shifted priorities is, that the western world as a whole is without direction, and so far, it is doing a terrible job in finding a new leader.  It also has become clear, that China is neither willing nor able to assume responsibility for the world order as fast, as the United States is giving it up. The western hemisphere and to some extend also the rest of the world needs a replacement for America’s leadership. Germany has always been particularly vulnerable to geopolitical chaos.  While meandering in the growing maze of political fragmentation, Germany at least needs to coordinate new policies and strategies with it’s neighbors, to create some coherence and stability. Beyond that, in order to find a new order for the West, we need to develop the ability to give trusted neighbors the lead in important topics.

Better Cornerstones

With the groundwork in place, let’s now see what the cornerstones of a German AI strategy should be:

  1. European cooperation, especially with France
  2. Quantum AI
  3. Edge computing
  4. Empowering the individual
  5. Grand Challenges

European Cooperation, especially with France

Cooperation with France was already in the original paper, and there seems to be some progress. It is by far the most important point for the reason, that president Macron has mentioned in the Wired interview: To defend European values we need to participate in setting the standards, and this can not be done with regulations in an effective manner (otherwise our public spirit would be in much better shape, for we have no shortage of regulations). It must be done by shaping the technology, establishing facts by creating useful systems and promoting them, so that they become de-facto standards when others start using them.

This concerns our freedom and the way we live. It is absolutely essential that Europe is united in this because no single European nation, not even France, is even remotely on par with China and the United States at this time. If France goes ahead in this quest, Germany should make it it’s top priority to provide every possible support.

Quantum AI

The second largest strategic mistake we can make, is a not so obvious one: Not providing  students at technical universities with access to quantum computers. The match of quantum computing’s opportunities to AI’s problems is so good, that as soon as “quantum supremacy” is reached, it will have an even greater impact on AI then on cryptography (and the impact on cryptography is expected to be drastic). Also the impact will come sooner, because for AI applications we don’t have to wait for the quantum computing community to figure out error correction to a quasi deterministic level, as we have it in classical computers today. For cryptoanalysis this is essential. For neural network training it is not.

I did not read anything about quantum computing in the cornerstone paper at all. A national strategy should at least consider the opportunities that might open up for AI; especially in a country that is left behind in supercomputing, but is at the same time is the home of Werner Heisenberg and Max Planck.

Edge Computing

Even without AI, Edge Computing (beyond Industry 4.0 scenarios) should be a national priority for rather profane reasons like poor internet connectivity and expensive data plans. Add AI and data driven business models to the picture, and it becomes clear, that Edge Computing solves a whole pile of problems that are specific to Germany. To pick out the most obvious one: Strict privacy regulations make it hard for businesses (and impossible for small businesses) to offer cloud based data driven services. But when personal data stays on premise at all times (because the relevant data processing happens on the consumers site), a whole new world of innovative services becomes possible, without subjecting the people, who offer these services, to the prospect of draconian punishments.

Moving AI workloads from the cloud to the edge introduces changes that needs special consideration.

  • Training deep neural networks can require a lot of computing power. Moving high performance computing capabilities to the edge would be a waste of resources, if they are only fully used for short peak loads. Research and product development that works towards a smooth utilization of edge resources should be supported. A priority should be use cases, where either a high but even load is put on edge nodes naturally, for example deep reinforcement learning with live data, or where neighboring nodes can sell idle resources to nodes that temporarily need stronger capabilities, for example based on IOTA.
  • Machine learning can be power hungry too. Moving workloads out of centralized data centers closer to the data works well together with decentralized electricity production from renewable sources. It reduces the amount of electricity that needs to be transported to the industry hotspots.

After years of shifting all relevant computing into the cloud, Edge Computing is a paradigm change. There are many obstacles to overcome, but most are technical and will be solved fast as soon as people start seriously working on it. Talent and money seem to be in place for this to happen, but it will lose momentum fast, when it turns out, that a blurry ambiguous legal framework puts the protagonists at risk.  To make Edge Computing happen, the German government has to make sure with clear, concise, reality aware regulations, that misguided jurisdictional aberrations are kept in check, so they don’t keep end users from using Edge devices.

Empowering the individual

eIoXsRujKQtLAzTiqfGXMGi5CZ_dJzhWBj7K-gQCtlQpX92IBThe perspective taken by the cornerstone paper is very much top-down. It talks very little about empowering people. Of cause, it is crucial to attract an elite and create an ideal environment for them to work in. But we should not stop there. The field of AI is vast and widely unexplored, with plenty of room for surprises. People here tend to have a broad and solid education, even those without a Data Science PhD. This is a great resource that we should tap into, if we want to get ahead. When Germany promotes people science, when German companies encourage their employees to use the available tools and implement AI solutions within their own realm of expertise, with their existing data, to solve their own local problems, then we will very soon have a broad adaptation of AI technology made in Germany through all industries and areas of society.

If we don’t do that, most of these solutions will come years later (when one of the few experts finally has time), or organizations fall back to standard products or cloud solutions, that won’t give Germany any competitive advantage.

Grand Challenges

Grand challenges define the areas that we want to push forward with special rigor. They represent the most pressing problems we hope to solve with AI technology. We are looking for the best possible solution and tender high rewards for it. These problems are:

  1. rL-S2wiYPVyjE_MJjB7dxa4JKZS_F0VtmAwpym1WHiUpX92IBAgile Intrusion Detection: Detecting hackers and dangerous software early is important for organizations as well as for individuals in a world where cyber warfare becomes more and more a regular tool of robust diplomacy, and nation states carry out direct attacks against private entities. To be able to protect personal data and trade secrets efficiently, European businesses need intelligent shields that detect and stop complex attacks with near to 100% accuracy. It is a huge design flaw in the GDPR to allow EU member states to just dump the responsibility for this part of cyber defense on the first line of victims in the crossfire of coordinated attacks: those private entities, that happen to work with personal data. Barber’s shops and soccer clubs are not in the business of cyber defense. Nation states are. The states should build and provide the tools that support protecting peoples’s data from attacks of criminals and other nations. These are defensive weapons of modern warfare and it is the responsibility of states to develop and deploy or provide them. Highly accurate intrusion detection and prevention is also an important puzzle piece for making Edge computing a success, because people will rightfully deny investing in devices that put them at risk. Computers on the edge need to be able to defend themselves against unforeseen attacks in a nimble and adaptive way. This can only be solved with an advanced combination of AI techniques and Germany needs the best possible solution, so the German government should make it a top priority to get the best talents in the field to work on this task.
  2. Reliable information and democratic consensus building: Fine granular political campaigns and micro-targeting lead to ever more polarization and radicalization even within homogeneous groups of people. When similar people who should have similar interests are systematically presented different facts and are shielded from other facts, these people diverge from each other in a way that undermines social cohesion and the fabric of democracy. The traditional mass media has proven to be ill equipped to curtail this development. To detect coordinated disinformation campaigns before being sucked into them, people need a tool that is much more personalized than mass media can be. We need easy-to-use instruments for each citizen to quickly check facts and put them into perspective at the moments they are presented to her. 85 years after the introduction of the Volksempfänger, it is time to introduce a device to deflate propaganda. This service needs to be free from commercial interests and political influence. It should operate as automatically as possible, but needs an independent controlling body to keep machine bias in check. And first of all, it needs to be created. That is what the second grand challenge is about.
  3. Next Generation Personal Agent: It is already becoming difficult to imagine a world without smart personal assistants like Amazon Alexa™, Google Assistant™, Microsoft Cortana™. They are extremely useful in organizing daily private life and are becoming better daily. They are also a picture book example of the principle agent problem.  When these agents are asked to perform an action that contains a conflict of interest between the owner and the service provider (i.e. Amazon, Google, Microsoft), it will tend to act in a way that resolves the conflict in favor of the service provider. We need a device that offers similar services as smart assistants, but is able to learn to make decisions in favor of the owner. Since this device needs to adapt to the owner much better than existent smart assistants, the learning should be less centralized than it is in current solutions. Ideally the device should be able to use it’s own computing capabilities for the training process. This also allows to use sensitive private and personal data for the training, without sending it to external service providers. The goal should be to have an electronic personal agent that the owner trusts enough that she does not need to control it’s actions.



Still struggeling with GDPR

The GDPR,  and it’s German derivative BDSG-new, is in a sense like a prophecy from the oracle of Delphi. You hear the words, but no matter how hard you try, you can’t understand what they really mean, until the course of history knocks you down. Now, in Germany for regulations, the role of the “course of history” is assumed by the courts, and until they provide some clarification about what exactly constitutes compliant behavior, I believe that at this blog we have to take the words of the regulation literally, which leads to a number of restrictions and inconveniences in our communication. Scroll beyond the next two paragraphs for details.

To provide some context: The German version of the European general privacy protection regulation is very generic in the description of the requirements, and on the other hand draconian in the measures. The fines for noncompliance are clearly made to put you out of business forever.

Experience tells us, that the most absurd possible interpretation of the regulation will prevail in judicature, until after decades of mindless harassment of all well meaning parties involved, a high court cleans out the mess for good. In Germany this is almost always the case when the internet is involved.

As a consequence there is currently only one way for me to comply, and I have no idea how anyone else seems to get around it: I refuse to process any personal information in matters regarding this blog. So, like most people, I have turned off the comment function. Also I do not accept any direct electronic communication about this blog. If you are a resident of an EU country, please do not even try to send me emails. They will be deleted instantly. Instead, please post your questions, thoughts and comments on Facebook, Twitter, LinkedIn, Google+, etc..

If you need to send me a private message, please encrypt it using this key, and then again post it on Facebook, Google+, etc. using the hashtag #notesonpersonaldatascience. I will find it and answer using the same channel.

The point of this is: this mode of communication leaves none of your personal data in any computer, router, firewall, cache or backup disk under my control.

Of course, it will at the same time refine your profile at Facebook or Google. I am truly sorry for that, and I also assume, that this is the opposite of the intention of the lawmakers who created the GDPR.

If anyone comes up with a better solution, I will happily adopt it. Maybe this should be Watsons next challenge! Meanwhile things are what they are.

The good news at the end: Users from the EU are no longer locked out from NotesOnPersonalDataScience.